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INTRODUCTION

Estimates of population abundance and trends are
among the most informative metrics upon which to
assess a population’s conservation status and base
management decisions, but obtaining good inference
from field survey data is often complicated by imper-
fect and heterogeneous detection of animals across
surveys (e.g. Kéry et al. 2009). Methods abound for
modeling detection probability to improve abun-
dance estimation, but the added uncertainty contri -
buted by the detection process nevertheless reduces
precision of the abundance and trend estimates,
often making it difficult to reliably assess population

status. For example, the US Marine Mammal Protec-
tion Act (MMPA) requires the National Marine Fish-
eries Service (NMFS) to routinely assess the popula-
tion status of marine mammal stocks occurring
regularly within US waters. Stock assessment reports
(SARs) must include, among other things, estimates
of population abundance and trends. For stocks in -
habiting waters off the US West Coast (e.g. Carretta
et al. 2013), abundance has been estimated from
 distance-sampling methods (Buckland et al. 2001,
2004), based on line-transect data from 6 ship-based
survey cruises conducted between 1991 and 2008
(Barlow & Forney 2007, Barlow 2010). However,
abundance trends have generally not been esti-
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mated, given the relatively few data points and typi-
cally low precision of individual estimates (e.g. coef-
ficient of variation, CV > 0.3 for most US stocks) that
limit statistical power to detect cetacean population
changes (Taylor et al. 2007, Jewell et al. 2012).

Bayesian hierarchical methods (e.g. Link & Sauer
2002, Royle & Dorazio 2008, Kéry & Royle 2010) can
help improve inference about abundance trends and
have recently been applied to US West Coast stocks
of fin whales Balaenoptera physalus and beaked
whales (Family Ziphiidae) (Moore & Barlow 2011,
2013). For these examples, a simple regression-trend
model was used to describe change in population
abundance through time as a function of a mean
growth rate parameter with lognormal process vari-
ance to characterize annual fluctuations around the
mean. An observation model (a detection model fol-
lowing line-transect distance sampling theory) de -
scribed the relationship between modeled abundance
and the field data. Trend and observation model
parameters were estimated using Markov Chain
Monte Carlo (MCMC) methods, and the estimates
were expressed as posterior probability densities,
allowing for probabilistic inference (e.g. probability
that the population is declining or that abundance is
above some value).

Here we applied an improved Bayesian hierarchical
model to estimate population abundance and trends
for sperm whales Physeter macrocephalus inhabiting
waters of the US West Coast Exclusive Economic
Zone (EEZ); these whales are designated by NMFS
as the ‘California-Oregon-Washington stock,’ part of
a larger but not clearly delineated North Pacific pop-
ulation (Mesnick et al. 2011, Mizroch & Rice 2013).
Sperm whales are listed under the US Endangered
Species Act as ‘endangered’ throughout their range,
the species having been depleted by decades of
whaling (Whitehead 2002, 2006). Adult males were
especially targeted and thus disproportionately de -
pleted (e.g. Whitehead et al. 1997). While many large
whale stocks have been recovering following the
1986 global moratorium on commercial whaling,
there is no evidence to date of sperm whale recovery
in the North Pacific or elsewhere. This may simply be
an artifact of insufficient data to assess trends for this
difficult-to-survey species (Kaschner et al. 2012). It
has also been hypothesized that severe disruption to
the species’ age- and complex societal structure may
have had lingering consequences for population
dynamics (Whitehead 2003, Wade et al. 2012).

Survey-specific estimates for the California- Oregon-
Washington stock, obtained using distance sampling
methods, have ranged from a high of 3140 (CV = 0.4)

in 2005 to a low of 300 (CV = 0.5) in 2008 (Barlow &
Forney 2007, Barlow 2010). Sperm whales are highly
mobile and wide ranging, and our study area encom-
passes only a fraction of the entire population, so
some real annual variation in abundance is expected
within the study area, but high sampling variance is
also an important contributor to variation in the
stand-alone annual estimates. Sperm whale sight-
ings are relatively rare (only 84 groups from the 6
surveys are included in our analysis, an average of
14 yr−1), and group size is highly variable (ranging in
our dataset from 1 to 37), so a few chance observations
can greatly affect individual-year estimates. Such high
variation in annual abundance estimates can have
important management implications, as we discuss
later (see ‘Discussion: Management implications’).

The model we describe improves on our previous
methods (Moore & Barlow 2011, 2013) in 2 respects.
First, we input explicit estimates of sampling vari-
ance for the number of sperm whale groups sighted,
which allows for improved (reduced) estimates of
process variance and hence greater precision in
trend estimates and projected abundance estimates.
Second, effects of covariates on detection probability
are commonly estimated using a Horvitz-Thompson-
like estimator (Marques & Buckland 2004, Barlow &
Forney 2007), which can be problematic in cases of
small sample sizes. We use an alternative approach
to circumvent this issue. Our analyses provide new
estimates of sperm whale abundance that are higher
and more stable across years than currently pub-
lished values. Conclusive estimates of trends for total
abundance within the study area were not obtained
(low precision in the growth rate parameter), but we
found that the abundance of adult male sperm
whales has increased within the California Current.
Our results have important and immediate implica-
tions for an ongoing management process for sperm
whales in the USA.

METHODS

Data

Survey methods for these data have been de -
scribed elsewhere in various detail (Kinzey et al.
2000, Barlow & Forney 2007, Moore & Barlow 2011).
Briefly, data for the current analysis were collected
during ship-based line-transect survey cruises con-
ducted in late summer and early fall of 1991, 1993,
1996, 2001, 2005, and 2008 within the California Cur-
rent marine ecosystem. These surveys were not de -
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signed for sperm whales in particular but rather for
collecting data on all observable cetacean species in
the system. The 1.14 million km2 study area extends
to ca. 556 km (300 nautical miles) offshore the US
West Coast, from the US−Canadian to US−Mexican
border, stratified into 4 areas of similar size (Fig. 1).
Stratification is important to analyses because effec-
tive survey effort can vary geographically (due to
geographic variation in survey conditions). Total on-
effort transect length within the study area was
ca. 62 900 km (6200 to 14 700 km yr−1; see Moore &
Barlow 2011 for tabulation by stratum within year).
Ob servers on the ship detected cetacean groups
visually using 25 × 150 binoculars mounted on the
vessel’s flying bridge. For each sighting, group size
(number of individuals) and perpendicular distance
from the vessel were recorded. Environmental condi-
tions that could potentially affect detection probabil-
ity were regularly recorded along the effort transects
(e.g. Beaufort sea state, rain or fog conditions, glare,
estimated visibility). In total, 100 sperm whale groups
were detected within 8 km of the vessel; however,

following recommendations by Buckland et al. (2001),
it is common to truncate the data to eliminate the
most distant observations, which are measured less
accurately from the ship (using binocular reticles)
and can make modeling the detection function diffi-
cult. Previous analyses of these data were based on a
truncation distance of 4 km (Barlow & Forney 2007,
Barlow 2010). Here (and following Barlow et al.
2011), we used a distance of 5.5 km to increase sam-
ple size; thus, 84 detected sperm whale groups were
used in the analysis (Table 1).

Analysis

Population trend model

We specified 2 different trend models, each de -
scribing simple exponential population growth. The
first is a log-linear regression model:

(1)

where annual abundance in year t (Nt; t = 1, 3, … 18
for years 1991, 1993, … 2008) is a function of an initial
abundance parameter (N0), the mean per-capita
growth rate (r), and process error (εt), which we treat
as log-normally distributed, although other error dis-
tributions, such as the gamma distribution, could be
used. The growth rate r is the sum of 4 per-capita
rates: birth − death + immigration − emigration. Each
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Fig. 1. Transects surveyed within the study area, divided
into 4 geographic strata (from north to south: Oregon-Wash-
ington, Northern California, Central California, Southern
California); US West Coast Exclusive Economic Zone (EEZ)
boundary (dotted line); and sperm whale Physeter macro-

cephalus sighting locations (D)

Stratum          1991      1993     1996     2001     2005     2008

Oregon-Washington
n1jt                           nd         nd         1           1           3           3
n2jt                  nd         nd         3           1           1           0

Northern California        
n1jt                             0            1           1           3           7           3
n2jt                    0            7           2           1           7           2

Central California
n1jt                             0            0           1           1           0           3
n2jt                    2            4           2           0           0           0

Southern California
n1jt                             4            0           2           0           2           1
n2jt                    7            1           1           4           1           1

Totals
n1t                    4            1           5           5          12         10
n2t                    9           12          8           6           9           3

Table 1. Number of sperm whale Physeter macrocephalus
groups seen, ngjt, by group size class (g = 1 for small groups;
2 for large groups) within each stratum j and year t. The Ore-
gon-Washington stratum was not surveyed in 1991 or 1993 

(nd: no data)
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of these rates has an annual process error; we view εt

as the sum of these, such that σ2
process describes vari-

ation in abundance with the study area due to demo-
graphic and movement processes. The second model
has the same parameters but describes population
change as a Markov process:

(2)

For sperm whales, the detection process differs for
animals occurring singly or in pairs from those occur-
ring in group sizes >2 (see below). The former are
presumed to be adult males, based on descriptions of
social structure by Best (1979), Lettevall et al. (2002),
Whitehead (2003) (also see ‘Discussion’). Therefore,
we divided estimates of total abundance into 2
group-size classes (denoted g = 1 for small groups
and g = 2 for large groups), so that Ngt = Ntϕgt. We
treat ϕ1t as a random variable: logit(ϕ1t) ~ Normal(μϕ1,
σϕ1), and ϕ2t = 1 – ϕ1t. The Ngt were further partitioned
across the 4 survey strata ( j):

(3)

The Dirichlet distribution is a multivariate general-
ization of the beta distribution. For a given group-
size class, the Dirichlet parameters ug1, ug2, ug3, ug4

(u > 0) dictate the mean proportions in each stratum
and sum to 1. Variance in ϕgjt decreases as the sum of
ugj increases, so higher total ugj would imply greater
consistency across years in how abundance is distrib-
uted across the survey strata. The density (D) of ani-
mals belonging to each group-size class, by stratum
and year, is Dgjt = Ngjt / Aj, where Aj is the stratum area.

Observation model

The primary data are the number of groups belong-
ing to group-size class g detected within each survey
stratum j during survey year t, i.e. ngjt. In our earlier
analyses (Moore & Barlow 2011, 2013), we assumed
that n was Poisson distributed; this may have under-
estimated sampling variance and thus overestimated
process variance. In some cases, Poisson overdisper-
sion may be handled simply by adding an extra ran-
dom effect term to the observation model (e.g. Link &
Sauer 2002, Kéry et al. 2009), but estimates of extra-
Poisson sampling variance and process variance can
be confounded, particularly in the case of small sam-
ples or if there is a lack of replication within the ran-

dom-effect level. We dealt with overdispersion by
treating n as a random variable from a generalized
Poisson process (Famoye 1993, Famoye et al. 2004):

(4)

where αgjt is an overdispersion parameter. We used
this error distribution because it conveniently allowed
us to incorporate independent empirical estimates of
extra-Poisson sampling variance into the model
framework. Based on a bootstrap approach in which
we repeatedly calculated ngjt from re-samples of sur-
vey line-segments, we estimated the average vari-
ance-mean ratio for ngjt to be 1.3 for small groups and
2.3 for large groups (in contrast with a value of 1 for a
simple Poisson process); it was straightforward to
then estimate αgjt within the generalized Poisson
likelihood (see Supplement 1 at www. int-res. com/
articles/ suppl/ n025p141_ supp .pdf).

The estimator for the expected number of groups
detected, μgjt, has a basic form:

(5)

where D is animal density, s is mean group size (so
D/s is the group density), L is the total transect
length, W is the maximum (truncation) distance from
the vessel within which groups are detected (so that
2LW is the total area surveyed; W = 5.5 km in our
analysis), and p is the average detection probability
for groups occurring within the area surveyed. For 

line-transect sampling, , where g(0) is 

detection probability of groups on the trackline, and
1/ƒ(0) is the so-called effective strip width, with ƒ(0)
being the value at distance y = 0 of the probability
density function for the detection function g(y)
(Buckland et al. 2001). If detection probability varies
as a function of covariates (z), then it is common to
use a Horvitz-Thompson-like estimator, for which the
estimate of p is conditioned on the sightings (Mar-
ques & Buckland 2004, Barlow & Forney 2007), so
that if p is independent of group size:

(6)

or if p depends on group size (e.g. larger groups are
more detectable), then:

(7)

These estimators (see Supplement 2 at www. int-
res. com/ articles/ suppl/n025p141 _ supp .pdf for sim-
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ple derivation) are asymptotically unbiased but can
be problematic when sample sizes are small such
that estimates of p or p/s in a particular stratum are
calculated from just a few groups. Even more prob-
lematic, as would be the case in our analysis, is when
some of the ngjt = 0, so that μgjt = 0, and the lack of
detections is treated as no information in the likeli-
hood. Better would be to estimate p solely as a func-
tion of survey conditions, rather than conditioning on
the sightings.

If the line-transect effort is divided into K segments
(or, for example, goes through habitat partitioned
into a gridded map with K cells), with detection-
related covariates measured for each, and detection
probability also varies with group size, then a gen-
eral estimator is:

(8)

(9)

Note that Ds (density of animals occurring in
groups of size s) and s could also be modeled for each
k as a function of covariates (e.g. Royle et al. 2004,
Gerrodette & Eguchi 2011), but here they are repre-
sented as mean values (e.g. for the year or stratum
encompassing the K effort segments). Modeling
group-size specific µ at the segment-level may be
impractical. However, the above estimator can be
variously simplified for individual cases, for example,
if group sizes can be collapsed into just a few classes
(g) within which p is constant (e.g. small and large
group sizes, with a mean s for each), or if p is inde-

pendent of group size entirely (so that summing
across group sizes or size classes is unnecessary, and
a single mean s could be used). The estimator could
also be simplified if p is modeled as a function of just
1 or a couple categorical covariates. We illustrate
such a simplification with our analysis.

For our sperm whale dataset, the detection process
differed for 2 group-size classes (Fig. 2). For animals
occurring singly or in pairs (n = 37 groups), detect-
ability decreased with distance from the vessel. For
larger groups (n = 47), there was no apparent de -
crease in detection probability from distance 0 to W,
so that for large groups, we were essentially conduct-
ing a strip transect (animals at all distances detected
with same probability, g(0)). We therefore assumed a
value of ƒ(0) = 1/W for large groups (i.e. effective strip
width = W). We estimated ƒ(0) for small groups using
a half-normal key function (Buckland et al. 2001) and
an intercept-only model fit to the distance data, as
the small sample size precluded covariate model fit-
ting (MCMC chains would not converge). However,
g(0), and therefore p, decreases as Beaufort sea state
increases (J. P. Barlow unpubl. data; Table 2). It may
also differ by group size class, but this has not been
estimated, so we modeled g(0) the same for both size
classes. By specifying g(0) as a function of a single
categorical covariate (sea state), we could collapse
individual line-segments into the total length of effort
occurring in each level of the covariate. Average g(0)
was therefore weighted by the proportion of transect
effort occurring in different sea states but was as -
sumed to be the same for both group size classes. Our
simplified estimator for µgjt was:
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Fig. 2. Perpendicular detection distances, within a truncation distance of 5.5 km of the vessel, for small and larger sperm whale 
Physeter macrocephalus groups (no groups were detected between 5 and 5.5 km)
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(10)

where b are the 6 Beaufort sea state classes: 0, 1, …, 5.
Note that in previous analyses (e.g. Barlow & Forney
2007, Barlow 2010, Whitehead 2002), a value of 0.87
(CV = 0.09) was used for g(0) in all sea states. Thus,
in our analysis, g(0) is lower overall and more uncer-
tain than has been assumed for previous analyses.

For group size, we fixed s1jt = 1.14, the mean group
size of small groups (again, g = 1) in the dataset. Most
small-group sightings consisted of single individuals,
and we considered the small standard error for the
observations (0.05) as negligible. For large groups
(g = 2), we did not want to rely solely on the observed
sizes in each j,t to estimate s2jt because of small sam-
ples within these individual strata. Alternatively, us-
ing the grand mean for all j,t would ignore possible
real variation across years and geographic strata. We
therefore treated s2jt as a random effect variable, gen-
erating estimates of s2jt that are intermediate be tween
a grand mean and the individual data means for each
j,t (Supplement 3 at www. int-res. com/ articles/ suppl/
n025p141 _ supp .pdf). Also, less effort was spent esti-
mating sperm whale group size during the first 3 sur-
veys (in the 1990s) than in later surveys (in the 2000s);
large-group sizes for the early years are known to be
underestimated for this reason. We therefore esti-
mated an extra parameter in the model as a correction
factor. See Supplement 3 for model details for s2jt.

Parameter estimation

Analyses were conducted in OpenBUGS 3.2.2, called
by R using the library R2OpenBUGS. Posterior distri-
butions for estimated parameters were constructed
from 2 MCMC chains, each of length 500 000. The
first 100 000 were discarded (burn-in), and the re-
maining samples were thinned by 10, so to that poste-
rior distributions were comprised of 80 000 retained
samples. R̂ values (an MCMC convergence statistic
outputted by OpenBUGS) of 1.00 on all para meters
suggested satisfactory model convergence. Flat priors
were used for all model parameters to be estimated
(see Table S1 in Supplement 4 and Supplement 5 at
www.int-res.com/ articles/ suppl/ n025 p141 _supp/). Post
hoc analysis of trends in adult male abundance Poste-
rior estimates for the N1t (abundance of individuals
occurring as loners or pairs, presumed to be adult
males) generally increased with time. To evaluate this
increase statistically, we fit a simple log-linear trend

model to each posterior sample of N1t estimates and
summarized the posterior distribution of trend model
slope coefficients.

RESULTS

Detection probability, population trends, 
and abundance

Inferences from regression and Markov trend mod-
els were almost identical, with a couple of exceptions
noted below. Unless stated otherwise, values reported
in this section are from the regression model, for sim-
plicity. We generally report posterior medians for pa-
rameter estimates, but we report posterior modes for
abundance estimates because the distributions are
strongly right-skewed and the mode (the most proba-
ble value) is perhaps the most comparable to the
maximum-likelihood point estimates that have been
reported previously (note, however, that Table 3 in-
cludes the posterior mode, median, and mean for

∑
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Year     20th percentile    Mode     Median     Mean     CV

1991             1249             1395        2011        2388      0.64
1993             1411             1611        2258        2729      0.67
1996             1341             1569        2024        2303      0.54
2001             1445             1750        2160        2439      0.52
2005             1722             2081        2628        3013      0.55
2008             1332             1658        2106        2431      0.58

Table 3. Posterior summaries for total sperm whale Physeter
macrocephalus abundance, based on the regression trend
model. Markov process model estimates were almost identi-
cal, i.e. point estimates and CVs were within a few percent 

of these values

Beaufort sea state                 Mean g(0)                         SE

              0                                    0.87                             0.08
              1                                    0.87                             0.08
              2                                    0.69                             0.14
              3                                    0.63                             0.17
              4                                    0.57                             0.20
              5                                    0.52                             0.22

Table 2. Bayesian priors for probability of detecting a sperm
whale Physeter macrocephalus group on the vessel transect
line (perpendicular distance from ship = 0 km), gb(0), for
Beaufort sea state b. Values for Beaufort 0 and 1 conditions,
g1(0), are from Barlow & Taylor (2005) and Barlow & Forney
(2007). Estimates for higher sea states (b = 2, 3, 4, 5) were
calculated as g0(0)e−0.113b, with variance on the slope coeffi-
cient chosen to provide estimates and CVs approximating 

those by Barlow (in review)

http://www.int-res.com/articles/suppl/n025p141_supp.pdf
http://www.int-res.com/articles/suppl/n025p141_supp.pdf
http://www.int-res.com/articles/suppl/n025p141_supp/
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abundance). The effective strip width, 1/f(0), for small
groups (group size ≤2) was estimated to be 3.4 km
(95% credible interval, CRI: 2.6−5.2 km), compared
to the fixed value of 5.5 km used for large groups.
Thus if g(0) were 1, detection probability p within a
5.5 km half-strip would be 0.62 for small groups (indi-
viduals and pairs) and 1.00 for large groups. However,
p depends on both effective strip width and Beaufort-
dependent g(0), which varies by survey year accord-
ing to Beaufort sea state conditions. We estimate that
for small groups, p within the surveyed area (2LW)
ranged from 0.31 to 0.36 across different strata and
years, while p for larger groups ranged from 0.50 to
0.58. However, substantial uncertainty in g(0), partic-
ularly in higher Beaufort states where a majority of
survey effort occurs (Table 2), contributed to low pre-
cision in the pgjt (CVs ≈ 0.24−0.38).

For the first 3 survey years, corrected
mean group size for large groups
(group size >2) was ca. 2.3× higher on
average than uncorrected values (95%
CRI: 1.1−5.3×). Mean corrected group
size for large groups was 16 (95% CRI:
9−29) overall, with corrected model
estimates ranging from 8 to 24 across
all individual years and strata.

Annual rate of change, r, for total
sperm whale abundance was 0.008
and 0.006 for the regression and
Markov models, respectively, but pre-
cision was low; 95% CRIs ranged from
−0.09 to +0.10 for the regression model
and from −0.17 to +0.18 for the Markov
model. A simpler regression model for
which group size was kept constant
across all j, t (i.e. random effect term
omitted) — this simply evaluates trend
in number of groups detected — pro-
vided almost identical results for r (not
shown). The probability that r was pos-
itive was 0.57 and 0.54, an equivocal
result. For the re gression model, σprocess

= 0.27, whereas for the Markov model,
σprocess = 0.19. Because sampling vari-
ance in ngjt was greater than Poisson,
our inclusion of explicit sampling vari-
ance estimates helped reduce the esti-
mates of σprocess, which would have
otherwise included both true process
and extra-Poisson sampling variance.
This im proves precision in the trend pa-
rameter and allows for more precise
prediction and projection modeling.

Nevertheless, these are fairly large process variance
estimates, indicative of an open population if they are
accurate. For example, the regression model suggests
that increases in annual abundance of >30% or de-
creases of >23% from one year to the next occur in
more than half of all years, with occasional doubling
or halving (once in 10 yr). With maximum potential
population growth for sperm whales probably being
less than a few percent per year (Whitehead 2002),
such population variation would not be possible from
birth and death processes alone.

Posterior modes for abundance (Table 3, Fig. 3A)
ranged from a low of 1395 in 1991 to a high of 2081 in
2005; CVs for individual year estimates ranged from
0.52 to 0.67. Of particular relevance for the sperm
whale SAR prepared by NMFS, the 20th percentile
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Fig. 3. (A) Abundance estimates (posterior medians [black circles] and 95%
credible intervals, CRIs) from the regression trend model for sperm whales
Physeter macrocephalus, with fitted trend line and 95% CRIs for trend. For
comparison, open and gray circles depict earlier published estimates from Bar-
low & Forney (2007) and Barlow (2010), with those for 1991 and 1993 (open cir-
cles) being for a smaller surveyed area. (B) Abundance estimates (black circles,
with 95% CRIs) and posterior distribution (inset) for annual rate of change for
small groups (individuals occurring as loners or pairs, presumably adult
males). In both panels, abundance estimates from the Markov model are 

virtually identical to the regression model estimates
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estimate of abundance (Nmin) for 2008 (corresponding
to the most recent survey year) was 1332 for the
regression model and 1358 for the Markov model,
compared to the currently used value of 751.

Increasing trend for abundance of adult males

There was strong evidence that abundance of sperm
whales occurring as lone individuals or in pairs (very
likely adult males) has increased in the study area.
For both the regression and Markov model, the pos-
terior median and mean growth rate was 0.06 (SD =
0.038), and the probability of the growth rate being
>0 was 0.97. Abundance for this segment of the pop-
ulation more than doubled over the course of the sur-
vey period, with posterior median estimates ranging
from 117 (SD = 97) in 1993 to 321 (SD = 188) in 2005
(Fig. 3B).

DISCUSSION

Comparison to previous estimates

Compared to previous abundance estimates for the
California Current study area, our estimates were
higher and less variable. The geometric mean of our
estimates across all 6 survey years was 1665 (poste-
rior modes), 2189 (medians), or 2539 (means), com-
pared to a previous point estimate of 1529 for data
pooled across these years (Barlow 2010). Our point
estimates (to use modes) ranged from ca. 1400 to
2100, compared to previous estimates ranging from
300 to 3140. The overall increase is ex pected because
we used lower g(0) values and corrected group-size
underestimates for the earlier surveys. Other factors
would have had less predictable effects, such as our
inclusion of additional data (by extending data trun-
cation distance from 4 km in previous analyses to
5.5 km in the current one) and differences in the
model approach. Reduced variation in the estimates
was the result of including a trend model that effec-
tively estimates annual abundance from fewer
parameters, using shrinkage estimators by treating
certain parameters (e.g. group size in j,t) as random
effect variables, and partitioning the detection pro-
cess by group-size class. These aspects of the model
also increase the precision of estimates and improve
the ability to detect trends. Our annual estimates
were actually less precise than previous estimates,
but this is only because we included additional forms
of uncertainty in our analysis here, namely higher

CVs for sea state-specific estimates of g(0), and esti-
mation (with error) of a group size correction factor.

Management implications

In any management context, high variation in
annual abundance estimates can have important
implications. Our case study exemplifies the benefit
of reducing this variation. The MMPA requires for
each marine mammal stock an estimate of potential
biological removal (PBR) − an annual limit to mortal-
ity and serious injury tied to population goals under
the Act, calculated as 0.5RmaxNminFR, where Rmax is
maximum potential growth rate, Nmin is the 20th per-
centile estimate of abundance, and FR is a recovery
factor that varies according to management consider-
ations. Thus, variation in PBR follows variation in the
abundance estimates. If PBR is exceeded, a Take-
Reduction Plan (TRP) process is initiated to reduce
fisheries-related impact. This process is costly to gov-
ernment and fisheries, so it is desirable to initiate
only when necessary. For sperm whales, the most
recent abundance point estimate (from the 2008 sur-
vey) is only 300, which may be inaccurate given high
sampling variance. To buffer this volatility, the most
recent SAR for sperm whales uses a geometric mean
from the 2005 and 2008 estimates (Carretta et al.
2013), but this remains less than ideal because it still
only makes use of some information from the time
series, and it ignores any potential population trends
that may be occurring (e.g. a simple mean from mul-
tiple years is an inherently biased estimate of current
abundance if the population is not stable). Moreover,
the current SAR guidelines (NMFS 2005) recom-
mend that abundance estimates used in the assess-
ments be <8 yr old. Therefore, the 2005 estimate has
now ‘expired,’ so if the sperm whale SAR were
revised today, the abundance estimate would sub-
stantially decrease. The PBR estimate from the most
recent SAR is 1.5. A new PBR value based on the
2008-only abundance estimate would be <1. The
results we have presented translate to PBR = 2.7.
These differences are non-trivial, because, depend-
ing on how many years of data are pooled, the aver-
age estimate for annual fisheries mortality and seri-
ous injuries is around 1.3 to 1.6 over the past 10 to
12 yr of data (2001−2012), and a Take-Reduction
Team is currently revising its TRP (which involves
new fishery regulations and revisions to the scientific
observer program) to deal with sperm whale bycatch
issues. Clearly there are ramifications of how abun-
dance is estimated.
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Benefits of the hierarchical Bayesian approach

Our analysis demonstrates several benefits of
taking a hierarchical Bayesian approach to trend
estimation. Posterior distribution summaries for
parameters facilitate probabilistic inference, mak-
ing it straightforward to directly estimate the prob-
ability of a positive or negative trend. Model spec-
ification is highly flexible (including Markov
processes) and missing data are handled well. In
our case, it was straightforward to partition the
modeling process for different group-size classes,
specify generalized Poisson error distributions with
empirical inputs for variance inflation and overdis-
persion parameters, and deal with missing sight-
ings or group size information from some of the
g,j,t  combinations.

Improved inference from incorporating trend mod-
els into the abundance estimation can be explained
in model selection terms. In previous sperm whale
analyses, data were pooled across years to estimate
the detection function, but group size and abundance
estimates for each stratum × year were otherwise
obtained from data unique to those cells. This is like
fitting a fully stratum × time-dependent abundance
model, requiring a separate parameter for group size
and abundance in each cell, with relatively few data
points per parameter and hence low precision. In
contrast, the trend model formalizes an assumption
that abundance within the survey area is related
through time, movements in and out of the study area
notwithstanding; thus, the population estimate for
any one year is informed by the entire dataset rather
than just that year’s data. The estimates in this case
are obtained from fewer parameters (an intercept, a
slope coefficient, and a random-effect process-vari-
ance estimate), with more data per parameter and
thus increased precision. Treating true abundance as
a random variable has the effect of limiting the extent
to which individual abundance estimates can vary,
increasing their precision and shrinking stand-alone
estimates toward a modeled expectation. In general,
simpler models (fewer parameters) improve precision
but at the possible expense of increased bias (Burn-
ham & Anderson 2002). Formal model selection met-
rics (e.g. deviance information criterion, DIC; Spiegel-
halter et al. 2002) can help guide the search for
parsimony, but model selection criteria for random-
effect models are generally lacking and not always
necessary. We opted simply to fit the most general
model that made biological sense on a priori grounds
and for which enough data were available to provide
satisfactorily precise and reasonable estimates.

Inference about sperm whales in the 
eastern North Pacific

We were unable to obtain good estimates of abun-
dance trends for the entire California-Oregon-Wash-
ington stock of sperm whales. Our best estimate is
that numbers in the California Current study area
were stable from 1991 to 2008, but precision of the
growth rate estimate is too low to make any reliable
conclusion. However, while a trend in total numbers is
difficult to assess, there is a high probability that the
number of animals traveling alone (or in some cases in
pairs) has increased within the study area, the best es-
timate being more than a 2-fold increase from 1991 to
2008. These are likely to be reproductive adult males,
known to roam individually or in very small groups,
whereas females and young animals occur in larger
familial groups, or in small bachelor herds in the case
of younger pre-breeding adult males (Best 1979, Let-
tevall et al. 2002, Whitehead 2003). Whether this
trend reflects a population-level increase in adult
male abundance or merely in creased use of the study
area by adult males is not possible to say from the
data. If it is a population-wide phenomenon, this does
not necessarily indicate that population numbers as a
whole increased throughout the survey period; it
could mainly reflect an ageing population, as male
calves from the 1980s (at cessation of the large-scale
industrial whaling era) would have been recruiting
into the reproductive adult class during the 2000s.
However, there are major uncertainties in sperm
whale stock structure throughout the eastern North
Pacific. Males and females may seasonally occupy dif-
ferent habitats, with females generally occurring in
warmer and lower-latitude waters than males, and
males known to range over great distances. Thus, it is
unknown as to which demographic group the adult
males in our dataset belong.

It has been hypothesized that a deficit of adult
males in the population due to targeted depletion by
industrial whalers may have stymied sperm whale
population recovery to date (Whitehead et al. 1997).
Increasing male abundance might be a more pre-
cisely measurable indicator of increased population
numbers overall, or it might at least indicate an
increase in the availability of suitable reproductive
males. Future survey data and analyses are needed
to estimate changes in sperm whale population
growth throughout a larger study region (e.g. com-
bining datasets summarized by Kaschner et al. 2012)
and to evaluate other demographic indicators of pop-
ulation growth, such as the number of calves (or
number of groups with calves) in the dataset.
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